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Abstract

The phase-lagging equation (PLE) is a new heat conduction equation which is different from the traditional heat

equation since there exists a time lag of the heat-flux vector, while the damped wave equation (DWE) is its first-order

approximation. In this article, we study the difference between the solutions of the PLE and the DWE by investigating

the solutions of a test problem. Results show that the level of the solution obtained by the PLE is smaller in magnitude

than the one obtained by the DWE, and that the DWE is a good approximation to the PLE when the time lag is small.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

For the problem of heat transported by conduction

in which the heat pulses are transmitted by waves at

finite but perhaps high speed [1,2], particularly, under

low temperature or high heat-flux conditions, the lag-

ging response must be included [1–6]. Thus, the tradi-

tional Fourier�s law [7]

~qð~r; sÞ ¼ �Krhð~r; sÞ ð1Þ

should be modified as follows [8]:

~qð~r; s þ k0Þ ¼ �Krhð~r; sÞ; ð2Þ

where~q is the heat-flux vector, K is the thermal conduc-
tivity, h is the absolute temperature, ~r is the position
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vector, and s is the time. Here, k0(>0) represents the time
lag required to establish steady thermal conduction in a

volume element once a temperature gradient has been

imposed across it. This quantity has been experimentally

determined for a number of materials [1,9,10]. Com-

bined with the energy conservation law

qCp
ohð~r; sÞ

os
þr �~qð~r; sÞ ¼ 0; ð3Þ

where q is the mass density, Cp is the specific heat at con-

stant pressure, and the thermal source term was assumed

to be zero for simplicity, Eq. (2) results in the following

phase-lagging (i.e., delay) heat transport equation:

ohð~r; s þ k0Þ
os

¼ jr2hð~r; sÞ; ð4Þ

where j = K/(qCp) is the thermal diffusivity. On the

other hand, approximating Eq. (2) by its first-order

Taylor series expansion yields the Maxwell–Cattaneo

(MC) thermal flux law [1,3,8,11,12], namely
ed.
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Nomenclature

Ci coefficient in a series

H(t) Heaviside unit step function

K thermal conductivity

j thermal diffusivity

M integer

T(t) function of t

T ðsÞ Laplace transform of T(t)

u(x, t) dimensionless temperature

b = p2

Dt, Dx time increment and grid size, respectively

k0 time lag

s0, sc values of the dimensionless time lag

2234 S. Su et al. / International Journal of Heat and Mass Transfer 48 (2005) 2233–2241
1þ k0
o

os

� �
~qð~r; sÞ ¼ �Krhð~r; sÞ; ð5Þ

which has received a great deal of attention within the

context of generalized thermoelasticity [3,4,6]. Combin-

ing Eq. (3) with Eq. (5), one may eliminate~q and obtain
the damped wave equation (DWE) [13–26]
Fig. 1. Coefficient Ci for (a) s0 = 0, (b) s0 =
ohð~r; sÞ
os

þ k0
o2hð~r; sÞ

os2
¼ jr2hð~r; sÞ: ð6Þ

In this study, we compare the difference between the

solutions of the phase-lagging heat transport equation

and the damped wave equation by investigating the

solutions of a test problem. The solutions of the
0.25sc, (c) s0 = 0.5sc and (d) s0 = sc.
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phase-lagging heat transport equation are obtained

using the Laplace transform method and an approxi-

mate analytic method [27].
2. Problem formulations and solutions

Consider one-dimensional heat conduction in a thin,

homogeneous, finite rod of constant cross-sectional area.

Assuming that the rod has a constant thermal diffusivity,

j > 0, that occupies the open interval (0, l) along the
v-axis of a Cartesian coordinate system, and heat conduc-
tion within the rod is governed by the MC law, the math-

ematical model of this physical system consists of the

following initial-boundary value problem (IBVP) [26]:

ohðv; sÞ
os

þ k0
o2hðv; sÞ

os2
¼ j

o2hðv; sÞ
ov2

;

ðv; sÞ 2 ð0; lÞ 	 ð0;1Þ; ð7aÞ
Fig. 2. u vs. x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt
hð0; sÞ ¼ 0; hðl; sÞ ¼ 0; s > 0; ð7bÞ

hðv; 0Þ ¼ h0 sin½pv=l�; ohðv; 0Þ=os ¼ 0; v 2 ð0; lÞ;
ð7cÞ

where h = h(v,s) denotes the temperature distribution
in the rod. Here, we assume that the initial temperature

of the rod is h0 sin[pv/l] and the temperature at both ends
is maintained at 0. Furthermore, we assume that the

lateral face of the rod is fully insulated, and oh/os = 0
at s = 0. Introducing the following non-dimensional
quantities:

u ¼ h
h0

; x ¼ v
l
; t ¼ sj

l2
; ð8Þ

where h0 > 0 is taken as a constant, IBVP (7) can be
re-written in dimensionless form as
), (d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = 0.
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ouðx; tÞ
ot

þ s0
o2uðx; tÞ

ot2
¼ o2uðx; tÞ

ox2
;

ðx; tÞ 2 ð0; 1Þ 	 ð0;1Þ; ð9aÞ

uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; t > 0; ð9bÞ

uðx; 0Þ ¼ sin½px�; ouðx; 0Þ=ot ¼ 0; x 2 ð0; 1Þ; ð9cÞ

where the dimensionless lag time is given by

s0 ¼
k0j

l2
: ð10Þ

The exact solution to the above IBVP can be obtained

using the separation of variables method and is given

by [26]:
Fig. 3. u vs. x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt), (
uðx; tÞ ¼

exp½�t=ð2s0Þ� sin½px� cosh½xt� þ sinh½xt�ffiffiffiffi
jDj

p
� �

;

s0 < sc;

exp½�t=ð2s0Þ� sin½px� 1þ t
2s0

� �
;

s0 ¼ sc;

exp½�t=ð2s0Þ� sin½px� cos½xt� þ sin½xt�ffiffiffiffi
jDj

p
� �

;

s0 > sc;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ

where sc � (2p)�2 is a critical value of the thermal lag
time, x ¼ ð2s0Þ�1

ffiffiffiffiffiffi
jDj

p
, and D = 1 � 4p2s0. Here, how-

ever, we must reject the case s0 > sc as it allows u to as-
sume negative values, in opposition to the fact that u

denotes an absolute quantity [26]. Furthermore, we note
d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = 0.001sc.
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that by letting s0! 0 in Eq. (11), the classical Fourier-

based solution is recovered, i.e.,

uðx; tÞ ¼ e�p2t sin½px�: ð12Þ

The corresponding (dimensionless) IBVP involving the

phase-lagging model, Eq. (4), is given by

ouðx; t þ s0Þ
ot

¼ o2uðx; tÞ
ox2

; ðx; tÞ 2 ð0; 1Þ 	 ð0;1Þ;

ð13aÞ

uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; t > 0; ð13bÞ

uðx; tÞ ¼ sin½px�; ðx; tÞ 2 ð0; 1Þ 	 ½�s0; 0�; ð13cÞ

where the IC is now replaced by the specification of u

over an interval of time. In this section, the exact solu-
Fig. 4. u vs. x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt),
tion to IBVP (13) will be determined using the Laplace

transform method. To this end, we assume a solution

of the form

uðx; tÞ ¼ T ðtÞ sin½px�: ð14Þ

From this, it is not difficult to show that T(t) satisfies the

ordinary delay differential equation

T 0ðt þ s0Þ þ p2T ðtÞ ¼ 0; ð15Þ

with the initial condition (IC)

T ðtÞ ¼ 1 when t 2 ½�s0; 0�: ð16Þ

Applying the Laplace transform, using the IC, and then

solving the (algebraic) equation in the transform domain

results in (see, e.g., [28])
(d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = 0.25sc.
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T ðsÞ ¼ 1
s
1� p2

sþ p2 exp½�ss0�

� �
; ð17Þ

where T ðsÞ denotes the image of T(t) is the Laplace

transform domain and s is the transform parameter.

Next, expanding Eq. (17) in powers of 1s yields

T ðsÞ ¼ 1
s
þ
X1
m¼0

�p2

s

� 
mþ1

exp½�mðss0Þ�: ð18Þ

Finally, inverting term-by-term using a table of inverses

along with the properties of the Laplace transform [28],

we obtain, after some manipulation, the polynomial

solution

T ðtÞ ¼ HðtÞ
X1
m¼0

ð�p2ÞmHðt � s0ðm� 1ÞÞ ðt � s0ðm� 1ÞÞm

m!

( )
;

ð19Þ
Fig. 5. u vs. x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt),
where H(Æ) denotes the Heaviside unit step function.
Hence, the exact solution to IBVP (13) is found to be

uðx; tÞ ¼ HðtÞ
X½t=s0 �þ1
m¼0

ð�s0p
2Þm ðt=s0 � ðm� 1ÞÞm

m!

( )
sin½px�;

ð20Þ

where [Æ] denotes the greatest integer (or floor) function;
i.e., [p] denotes the greatest integer not larger than the

real number p.

It should be pointed out that when t� s0, the value
of [t/s0] is very large, and thus our series solution may
contain a large number of terms. Consequently, we

now consider another solution method called the

approximate analytical method [27], which is well-suited

for the case t� s0. To this end, we first rewrite Eq. (15)
as follows:
(d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = 0.5sc.
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T 0ðt þ s0Þ ¼ bT ðtÞ; ð21Þ
where b = p2. Now let

T ðtÞ ¼
XM
i¼0

Citi; ð22Þ

where M is a large integer and C0 = T(0). Substituting

Eq. (22) into Eq. (21) gives

XM
i¼1

Ciiðt þ s0Þi�1 ¼ b
XM
i¼0

Citi: ð23Þ

For t = 0 in Eq. (23), we obtain

XM
i¼1

Ciisi�10 ¼ bC0: ð24Þ

Differentiating Eq. (23) with respect to t, and setting

t = 0, we obtain
Fig. 6. u vs. x for (a) t = 2(Dt), (b) t = 20(Dt), (c) t = 200(Dt)
bk!Ck ¼
XM
i¼kþ1

Ciiði� 1Þ � � � ði� kÞsi�k�1
0 ;

k ¼ 0; . . . ;M � 1: ð25Þ

We now solve for Ci (i = 1, . . . ,M) using Eq. (25). Let-
ting k =M � 1, gives

bCM�1ðM � 1Þ! ¼ CMM !; ð26Þ

which can be rewritten as

CM ¼ CM�1
aM�1

M

� �
; where aM�1 ¼ b: ð27Þ

Letting k =M � 2,M � 3, . . . , 0, we obtain expressions

aM�k ¼
b

1þ
Pk�1
i¼1

si
0

i!

Qi
j¼1

aM�kþj

; k ¼ 1; . . . ;M ; ð28Þ
, (d) t = 2000(Dt); Dx = 0.04; Dt = 0.0004; and s0 = sc.
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and

CM�kþ1 ¼ CM�k
aM�k

M � k þ 1

� 

;

where C0 ¼ T ð0Þ; k ¼ 1; . . . ;M : ð29Þ

Once the Ci (i = 0, . . . ,M) are obtained, T(t) can be cal-
culated by Eq. (22). Hence, we obtain the following

approximate solution to the IBVP of Eq. (13):

uðx; tÞ ¼
XM
i¼0

Citi sin½px�: ð30Þ

To determine how large the integerM should be, we have,

in Fig. 1, plotted the coefficients Ci (i = 0,1, 2, . . . ,M),
where M = 50,100,150, for s0 = 0,0.25sc, 0.5sc, sc. It
can be seen that for each value of s0 considered, the coef-
ficients do not change significantly as the value ofM is in-

creased. Thus, we choseM = 50 in this study.
3. Numerical results and testing

We have computed and plotted Eq. (11), the exact

solution to IBVP (9) involving the DWE, the exact

and approximate solutions, Eqs. (20) and (30), respec-

tively, to IBVP (13) involving the phase-lagging equa-

tion, and for comparison Eq. (12), the exact solution

of the traditional heat conduction equation. In our com-

putation, we chose the time increment, Dt, and the grid
size, Dx, to be 0.0004 and 0.04, respectively.
In Figs. 2–6, we have plotted the temporal evolution

of the temperature vs. x profile for s0 = 0,0.001sc, 0.25sc,
0.5sc, sc, the time-sequence consisting of the times of
2(Dt), 20(Dt), 200(Dt), and 2000(Dt). Clearly, Fig. 2
shows that these three solutions are the same when

s0 = 0, as expected. Fig. 3 shows that the four solutions
overlap when s0 = 0.001sc. When s0 = 0.25sc, one may
see from Fig. 4 that the solutions corresponding to

Eqs. (20) and (30) are very close to each other, and the

levels of both are lower than that of the solution given

in Eq. (11). In particular, when t = 2000(Dt), the level
of the solution corresponding to Eq. (12) is much higher

than the other three. Similar results can be seen in Figs. 5

and 6. Furthermore, one can see from Figs. 3–6 that by

decreasing s0, the solutions given in Eqs. (20) and (30) be-
come ‘‘close’’ to the one corresponding to Eq. (11). This

implies that when k0! 0, the DWE is a good approxi-

mation to the phase-lagging heat transport equation.
4. Conclusion

The differences between the solutions of the phase-

lagging heat transport equation and the damped wave

equation are compared by investigating the solutions

of a test problem. Results show that the magnitude of
the solution obtained by the phase-lagging heat trans-

port equation is smaller than the one obtained by the

DWE, and that the DWE is a good approximation of

the phase-lagging heat transport equation when k0 is
small. Our next task is to study the case where nonlinear

source terms can appear.
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